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In this paper we present an overview of the different goal programming formulations, their 

assumptions, limitations and implications for agricultural decision making. The concept of 

standardized dual variables which provides a more meaningful interpretation of shadow prices in 

goal programming is introduced through a simple example of farm agricultural planning. 
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ABSTRACT 
 

 

INTRODUCTION 

Goal programming technique has its great potential, particularly in decision-making 

environments involving multiple objectives like farm agricultural planning and 

management. 

In many situations farmers are often faced with several objectives simultaneously and no 

easy single choice. Examples of such objectives are: maximization of net revenue; 

minimization of capital borrowing and hired labour; and minimization of the risk 

associated with yield and field day variability. On a regional or national level, the 

agricultural decision maker may be faced not only with decisions about economic  

growth, but also about population nutritional requirements, strategic planning, 

environmental and other institutional issues. In this paper, we present aspect of goal 

programming based on duality theory through an example of farm agricultural planning. 

 

GOAL PROGRAMMING MODEL 

The importance of more than one objective in agricultural planning, studies is illustrated 

by the works of Ignizio et al., Barnett et al., Candler and Boehlje., Harper and Eastman., 

Hatch et al., and Willis and Perlack. Romero., and Schniederjans provide excellent 

reviews of the development in goal programming. 

A generic-type goal planning model can be compactly written as: 
 

Minimize: w d w d ......... (1) 
 

Subject to: Gx d d g ......... (2) 
 

Ax < b ............................................................................(3) 
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x, d  ,  d 0 .................................................................................... (4) 

where x is a (n×1) vector of decision variables, G is a (p×n) matrix of goal contribution 

coefficients; g is a (p×1) vector of desired goal levels; d+ and d– are (p×1) vector 

representing, respectively, positive and negative deviations from goals; A is a (m×n) 

matrix of technological coefficients; b is a (m×1) vector of resource levels. In addition, 

w+ and w– are (1×p) vectors of weights which may or may not be preemptive. 

 

DUALITY INTERPRETATION OF GOAL PROGRAMMING 

When a goal programming is solved as a minimum sum of weighted deviations, the 

problem of choosing the weights has been the focus of a lot of work because of its 

complexity. The commonly used weighting procedure is to have the decision maker 

associate the highest weights with the most important goals. The use of duality theory 

may help provide a new insight into the design and interpretation of time weights. We 

focus on the interpretation of duality in goal programming and its usefulness in decision 

making. 

Without loss of generality we restrict our attention to a primal problem with only goal 

constraints. In addition, the distinction between preemptive and non-preemptive 

formulations will be implicit in the distinction between a single dual or a sequence of 

prioritized duals. 

Consider the following primal goal programming and dual goal programming 

formulations in compact form: 

Primal : Minimize: Z = w d w d 

Subject to: Gx + d 

x, 

Dual : Maximize: y = vt g 

d g 

d  , d 0 

Subject to: G
t
v 0 

w v w 

where v is a vector of dual variables, y is the value of the dual objective function, the 

problem dimensions are as in (1) – (4), and t is used to indicate transpose. 

In goal programming, the primal may still be interpreted in physical terms where an 

optimal product mix contributes to the achievement of a certain number of goal targets. 

However, the corresponding dual is a "pricing problem of the goal targets" in terms of the 

decision maker's preferences. Hence, the dual should have preference–utility 

interpretation with the dual variables representing absolute marginal utilities of the 

different goals. We show below that a more useful interpretation of the dual variables is 

in relative terms, and we provide a numerical illustration. 

From primal-dual relationships between primal goal programming and dual goal 

programming, we have the following: 
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y < z (for any pair of feasible solutions) ..................................................................(5) 

y* = z* (at optimality) ..............................................................................................(6) 

* 

......... (7) 
 
 

......... (8) 

The first two relations can be interpreted together as follows: the total disutility of 

deviation from the goal targets (i.e., z) is always at least as large as the total utility of 

these goal targets (i.e., y), and equal to it at optimility. 

Relation (7) states that the ith optimal dual variable represents the marginal effect of the 

ith goal target of total disutility (or utility). Relation (8) is a restatement of the weights 

attached to deviations (either positive or negative) as marginal effects of these deviations. 

Finally, from (7) and (8) we also obtain the following relations: 

vi* (  gi) = wi (  di*) =   z* =   y* ............................................................................... (9) 

vi* / wi  =   di* /  gi .................................................................................................(10) 

from (9) we see that the same marginal disutility / utility effect can be derived from either 

changing the goal targets or changing the corresponding deviations. But the most 

interesting result is given by (10) which defines a "marginal rate of substitution" between 

a goal target and the distance away from it as equal to the marginal utility of the goal 

divided by its weight. Hence, we can use these standardized dual variables (vi*/wi) as a 

measure of goal achievement across all goals. This provides a way of properly 

interpreting and using the dual variables in goal programming with or without 

preemption. 

 

NUMERICAL EXAMPLE 

The following simplified example is used throughout to illustrate the analysis. We have 

chosen two variables and two constraints so that we may be able to have graphical 

interpretations for both the primal and the dual. Consider a farmer who can grow either 

Wheat or Gram. He has 20 acres of land and would like to achieve at least Rs. 6,00,000 

of revenue while minimizing total production cost. Table 1 contains the relevant 

information. 

Table 1 : Cost / Revenue Data 

  
Wheat 

 
Gram 

 
Yield cwt/Acre 

 
20 

 
8 

 
Price Rs/cwt 

 
1100 

 
3200 

 
Cost Rs / Acre 

 
8,000 

 
7000 

z* 

g 
v i 

i 

y* 

d 
* 

wi 

i 
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1 

This problem is formulated as the following linear programming problem: 

(LP) Minimize: z = 8,000x1 + 7,000x2 

subject to: x1 + x2 < 20 

22,000x1 + 25,600x2 > 6,00,000 

x1, x2 > 0 

where x1 and x2 represents acres of wheat and gram respectively. Clearly, the problem 

has no feasible solution, as shown in figure 1. To get around the infeasibility and still find 

an acceptable "compromise" solution, the following simple goal programming 

formulation is used: 

(GP) Minimize: z = 1 

Subject to: x1 x2 d1 d
1 = 20 

22,000x1 + 25,600x2 + 
d2 – 

d2 
= 6,00,000 

x1,  x2,   d  ,  d > 0 

where d1 and d2 are weights attached to the deviation variables. In this form the objective 

function is expressed as a weighted sum of percent deviations from targets. For 

illustration purposes a particular set of weight is d1 = d2 =1 meaning equal importance, is 

given to both goals. We let 

100  1 w
 100  2 w

 

20 ; and 6,00,000 
2
 

This formulation is easily interpreted in light of Figure 1 as one which seeks to minimize 

the total infeasibility in the constraints of the original linear programming problem. The 

resulting goal programming solution is x2 = 20 (grow 20 acres of gram) and d2+ = Rs. 

88,000 (revenue shortage) and corresponds to P1 in Figure 1. For the farmer this solution 

will guarantee as Rs 5,12,000 total return. 

d1 

20 
100 2 

d2 

6,00,000 
100 
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Figure 1: Solution of Farm Example 

Now, suppose that the farmer looks at this solution and requires that an absolute first 

priority is not violate the revenue constraint because it may be a bankruptcy level. Once 

this is achieved, a minimization of the infeasibility of the total land constraint will be 

sought. This requirement is formulated as a lexicographic (or prioritized) goal 

programming with objective function {(d 
2 
),(d

1 
)} solved in two iterations: 

Iteration One: 

Minimize: 

Subject to : 22,000x1 + 25,600x2 + d2+ – d2– = 6,00,000 

x1, x2 , d1  ,  d1 0 

with optimal solution:  
d 2 = 0, 22,000x1 + 25,600x2 – d 2 

 

=6,00,000 

(Line segment P2P3 in Figure 1) 

 

Iteration Two : 

Minimize: z = 
{d

1 
}
 

Subject to: x1 x2 d1 d1 = 20 

22,000x1 + 25,600x2 + 
d 

2 = 6,00,000 

z {d2 } 
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with optimal solution : 

x1, x2 , d1 , d2 , d2  0 

x2 = 23.44, d
1  = 3.44 (P2 in Figure 1) 

The case of an optimal but dominated solution, due to alternative optima, can also be 

illustrated. Consider the case where the farmer wants to use up all the land available (20 

acres). The corresponding goal programming will have objective function {d
1 
d

1 
} . A 

regular simplex code gives the following solution: x1 = 20, d 
2 = 1,60,000 (P4 in Figure 

1). But an alternate optimal solution is easily found to be: x2=20, d 
2 = 88,000 (P1 in 

Figure 1). In terms of the original problem the two solutions are compared in Table 2, 

from which clearly the first solution is dominated. 

 

Table 2 : Comparing Alternate GP Solutions 

 Optimal Solution 

x1 = 20; x2=0 

Alternate Optimal Solution 

x1=0 ; x2=20 

 
Cost 

 
1,60,000 

 
1,40,000 

 
Revenue 

 
4,40,000 

 
5,12,000 

 
Deficit 

 
1,60,000 

 
88,000 

To illustrate the duality result, consider the following goal programming model 

corresponding to the original linear programming problem, which is inconsistent: 

(GP) Minimize : z = 
w1 d1 

w2d2 

Subject to : x1 x2 d1 d1 20 

22,000x1 25,600x2  d2 d2 6,00,000 

x1,  x2 ,  d  , d 0 

where w
1 and w

2 are chosen in a way that will make the objective function consistent 

and should reflect the importance of each goal. If we use the opportunity costs of incurred 

shortages as a measure of relative importance, then 

cost of providing an additional acre of land and 

additional revenue foregone. 

w1   = 1,27,000 is interpreted as the 

w
2  =  1.00  is  the  cost  per  unit  of 

Now, we consider the dual problems of both linear programming and goal programming 

above: 

(DLP) Maximize: V = 20y1 6,00,000y2 

Subject to: y1 22,000y2 

y1 25,600y2 

8,000 

7,000 
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y1, y 2 0 

(DGP) Maximize: V = 20y1 6,00,000y2 

Subject to: y1 22,000y2 0 

y1 25,600y2 0 

0  y1 

o y2 

1,27,000 

1 

Figure 2, depicts both problems with the hached area corresponding to dual linear 

programming and the cross-hatched area corresponding to dual goal programming. 

Since the original linear programming problem was inconsistent, by duality theory, we 

know that its dual linear programming is unbounded. The goal program which was 

formulated to resolve the inconsistency is a linear program which has feasible solutions. 

Its dual goal program has the finite optimal solution: y1 =25,600, y2 =1 as can be seen 

from Figure 2. This solution corresponds to shadow prices of Rs. – 25,600 for land and 

Rs. 1.00 for total revenue, with the following interpretations, based on (5) – (10) above: 
 

Figure 2 : Dual Solutions for (DLP) and (DGP) 

(1) In absolute terms, the magnitude of the shadow prices can be misleading in terms 

of the ranking of the constraints with respect to total goal achievement. That is, an 

additional acre of land will improve the total goal achievement by Rs. 25,600 even 

though it may cost at least Rs. 1,27,000 to acquire; on the other hand, an additional 

rupees of revenue forgone will only improve the total goal achievement by one rupee. 

The first part of Table 3 summerizes these effects. 
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(2) In relative terms, when comparing the achievement of both goals, the ratios of the 

shadow prices to their corresponding primal weights (standardized dual values) convey 

more meaningful information: 

y1 25,600 

w1 1,27,000 
0.20 and 

y2 

w2 

1 
1.00 

1 

These ratios reveal that on a per unit basis total revenue contribute 100 percent to goal 

achievement compared to 20 percent for land. This is can be seen from the fact that the 

Rs 1,27,000 opportunity cost of land will  yield Rs.  1,27,000 improvement instead of  

Rs. 25,600 for land (see table 3, second part). This suggests that care should be taken in 

practically interpreting shadow prices in goal programming. 

 

Table 3: Shadow Price Effects 

Constraint 1 

(Acre) 

Constraint 2 

(Rs.) 

 

Total Goal Achievement 

V (Rs.) 
Change in V 

(Rs.) 

20 6,00,000 88,000 – – 

 
21 

 
6,00,000 

 
62,400 

 
– 25,600 

 
19 

 
6,00,000 

 
1,13,600 

 
+ 25,600 

 
20 

 
6,00,001 

 
88,001 

 
+1 

 
20 

 
5,99,999 

 
87,999 

 
-1 

 
20 

 
7,27,000 

 
2,15,000 

 
+1,27,000 

 
20 

 
4,73,000 

 
– 39,000 

 
–1,27,000 

 

CONCLUSION 

The goal programming approach are two problems embodied in the following questions: 

(a) Priorities: How to associate the results of a given solution to the satisfaction of the 

ranking; (b) Weights: How to generate them and what they mean. We think that the 

duality interpretation of the weights can help both the analysts and the decision makers in 

the design and solutions of meaningful multicriteria decision problems in farm 

agricultural planning and management. 
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